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ABSTRACT-K-Means Clustering is an immensely popular clustering algorithm for data mining which partitions data into different clusters on the basis of 
similarity between the data points and aims at maximizing the intra-class similarity and minimizing the inter-class similarity. This Algorithm suffers from the 
limitation of being time consuming and producing different results with different centroids chosen randomly. The first limitation is solved using the Enhanced 

K-Means algorithm. This paper shows the comparison of Basic K-Means and Enhanced K-Means algorithm which shows that Enhanced K- Means is more 

efficient than Basic K-Means Algorithm.   
Index Terms—basic K-Means Clustering, centroids, Clustering, computational time complexity, enhanced k-means,iterations, local optimum  

. 

1. INTRODUCTION 
cluster analysis is grouping of objects into a number of 

more or less homogeneous subgroups on the basis of an 

often subjectively chosen measure of similarity (i.e., chosen 

subjectively based on its ability to create "interesting" 

clusters), such that the similarity between objects within a 

subgroup is larger than the similarity between objects 

belonging to different subgroups. Cluster analysis divides 

data into meaningful or useful groups (clusters). If 

meaningful clusters are the goal, then the resulting clusters 

should capture the "natural" structure of the data..  

K-Means is a clustering algorithm that deals with numerical 

attribute values (NAs) primarily, although it can also be 

applied to categorical datasets with binary values, by 

viewing the binary values as numerical. The k-Means 

clustering algorithm for numerical datasets requires the 

user to specify the number of clusters to be produced and 

the algorithm builds and refines the specified number of 

clusters. But due to number of iterations in the loop , the 

basic k-means is computationally more time consuming 

and also it produces different results with different dataset..  

2. BASIC K-MEANS TECHNIQUE 
Suppose that a dataset of n data points x1, x2, …, xn such 

that each data point is in Rd, the problem of finding the 

minimum variance clustering of the dataset into k clusters 

is that of finding k points ,mj} (j=1, 2, …, k) in Rd such that 

                                              n 

                                             ∑     *min  d2(xi, mj)+                                  

                                            i,j=1       

 

is minimized, where d(xi, mj) denotes the Euclidean 

distance between xi and mj. The points ,mj} (j=1, 2, …, k) 

are known as cluster centroids. The problem in above 

Equation is to find k cluster centroids, such that the average 

squared Euclidean distance (mean squared error, MSE) 

between a data point and its nearest cluster centroid is 

minimized. 

The k-means algorithm provides an easy method to 

implement approximate solution to this Equation. The 

reasons for the popularity of k-means are ease and 

simplicity of implementation, scalability, speed of 

convergence and adaptability to sparse data. 

The k-means algorithm can be thought of as a gradient 

descent procedure, which begins at starting cluster 

centroids, and iteratively updates these centroids to 

decrease the objective function in the Equation listed above. 

The k-means always converge to a local minimum. The 

particular local minimum found depends on the  starting 

cluster centroids. The problem of finding the global 

minimum is NP-complete. The k-means algorithm updates 

cluster centroids till local minimum is found. Algorithm 1 

shows the k-means algorithm.  

Algorithm 1  

K-Means Clustering Algorithm  

1. MSE = largenumber; 

2. Select initial cluster centroids {mj}jk=1; 

3. Do 

4. OldMSE = MSE; 

5. MSE1 = 0; 

6. For j=1 to k 

7. mj=0; nj=0; 

8. endfor 
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9. For i = 1 to n 

10. For j = 1 to k 

11. Compute squared Euclidean distance d2 (xi, mj); 

12. endfor 

13. Find the closest centroid mj to xi; 

14. mj = mj+xi; nj = nj+1; 

15. MSE1 = MSE1 + d2 (xi, mj); 

16. endfor 

17. For j = 1 to k 

18. nj = max (nj, 1); mj = mj/nj; 

19. endfor 

20. MSE = MSE1; 

while (MSE < OldMSE) 

Before the k-means algorithm converges, distance and 

centroid calculations are done while loops are executed a 

number of times, say l, where the positive integer l is 

known as the number of k-means iterations. The precise 

value of l varies depending on the initial starting cluster 

centroids even on the same dataset. So the computational 

time complexity of the algorithm is O(nkl), where n is the 

total number of objects in the dataset, k is the required 

number of clusters we identified and l is the number of 

iterations, k≤n,l≤n. 

2.1 Scenario based on K-means 

Following is an example of original k-mean clustering in 

which the centroids are taken randomly. 

Suppose we have several objects (8 Employees of an 

Organization) and each object has two attributes or features 

as shown in table below. Our goal is to group these objects 

into K=3 groups based on the two features (Experience in 

no. of yrs and Annual Salary). 
TABLE1 

Employee Data Set 

EMPLOYEE SALARY(ATTR 

1) 

EXPERIENCE(ATTR2) 

Emp1 0.5 2 

Emp2 1 3 

Emp3 2 3.5 

Emp4 3 4 

Emp5 3.5 5 

Emp6 4 6 

Emp7 4.5 7 

Emp8 5 7.5 

Each employee represents one point with two attributes (X, 

Y) that we can represent in coordinate in an attribute space 

as shown in figure 1 
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Fig1. Dataset with three initial random centroids 

 

Initial value of centroids : Suppose we use Emp1, Emp2 and 

Emp3 as the first centroids. Let c1,  c2 , c3 denote the 

coordinate of the centroids, then c1 (0.5, 2) ,c2 (1,3) , c3(2, 

3.5) are centroids 

1.Objects-Centroids distance : we calculate the distance 

between cluster centroid to each object. Let us use 

Euclidean distance, then we have distance matrix at 

iteration 0 is  

D0=   

2. Each column in the distance matrix symbolizes the object. 

The first row of the distance matrix corresponds to the 

distance of each object to the first centroid and the second 

row is the distance of each object to the second centroid. 

Similarly for third. 

3.Objects Clustering : We assign each object based on the 

minimum distance. Thus, Emp1 is assigned to group 1, 

Emp2 to group 2, Emp3, Emp4 …..Emp8 to group 3 . The 

element of Group matrix below is 1 if and only if the object 

is assigned to that group. 
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G1=   

 

4. Iteration-1, determine centroids : Knowing the members 

of each group, now we compute the new centroid of each 

group based on these new memberships. Group 1 only has 

one member thus the centroid remains in c1 (0.5,2). Group 2 

also has one member, thus the centroid remains C2 (1,3). 

Group 3 has 6 members so the cenroid becomes the average 

coordinate among the six members:C3= 

((2+3+3.5+4+4.5+5)/6 , (3.5+4+5+6+7+7.5)/6))  = ( 3.66 , 5.5 ) 
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fig2. Dataset after iteration1 

 

5. Iteration-1, Objects-Centroids distances : The next step 

is to compute the distance of all objects to the new 

centroids. Similar to step 2, we have distance matrix at 

iteration 1 is  

D1=   

6. Iteration-1, Objects clustering: Similar to step 3, we 

assign each object based on the minimum distance. Based 

on the new distance matrix, we move Emp3 to Group 2 

while all the other objects remain as before. The Group 

matrix is shown below  

G1=   

7. Iteration 2, determine centroids: Now we repeat step 4 

to calculate the new centroids coordinate based on the 

clustering of previous iteration. 

C1= (.5 ,2)       C2= (1.5 , 3.25 )        C3= (4 , 5.9 ) 

8. Iteration-2, Objects-Centroids distances : Repeat step 2 

again, we have new distance matrix at iteration 2 as  

D2=

0
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fig3. Dataset after iteration2

 9. Iteration-2, Objects clustering: Again, we assign each 

object based on the minimum distance.  

G2=   

10. Iteration-3, determine centroids:  

C1 = (0.5 ,2)       C2 = ( 2, 3.5)        C3 = (4.25 , 6.37) 

11. Iteration-3, Objects-Centroids distances : 

D2=  
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fig3 dataset after iteration3 

12. Iteration-3, Objects clustering: 

 

G3=   

 We obtain result that G3 = G2. Comparing the grouping of 

last iteration and this iteration reveals that the objects does 
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not move group anymore. Thus, the computation of the k-

mean clustering has reached its stability and no more 

iteration is needed. We get the final grouping as the results 

shown in Table. 

 

 

TABLE2 

CLUSTERING RESULTS 

EMPLOYE

E 

SALARY(ATT

RI 1) 

EXPERIENCE(AT

TRI 2) 

GROU

P 

Emp1 0.5 2 1 

Emp2 1 3 2 

Emp3 2 3.5 2 

Emp4 3 4 2 

Emp5 3.5 5 3 

Emp6 4 6 3 

Emp7 4.5 7 3 

Emp8 5 7.5 3 

 

2.2 Limitations of K-Means 

 It is computationally very expensive as it involves 

several distance calculations of each data point 

from all the centroids in each iteration. 

 The final cluster results heavily depends on the 

selection of initial centroids which causes it to 

converge at local optimum. 

 

3. AN EFFICIENT ENHANCED K-MEAN 
CLUSTERING TECHNIQUE 
The following algorithm makes k-means more efficient by 

removing the first limitation i.e. it limits the number of 

computations to some extent. The idea makes k-means 

more efficient, especially for dataset containing large 

number of clusters. Since, in each iteration, the k-means 

algorithm computes the distances between data point and 

all centers, this is computationally very expensive 

especially for huge datasets. Therefore, we do can benefit 

from previous iteration of k-means algorithm. For each data 

point, we can keep the distance to the nearest cluster. At the 

next iteration, we compute the distance to the previous 

nearest cluster. If the new distance is less than or equal to 

the previous distance, the point stays in its cluster, and 

there is no need to compute its distances to the other cluster 

centers. This saves the time required to compute distances 

to k−1 cluster centers. 

 

Following fig. explains the idea. 

Fig. 4.(a) represents the dataset points and the initial 3 

centroids.  

 

Figure 4(a) : Initial Centroids to a dataset 

Fig.4(b) shows points distribution over the initial 3 

centroids, and the new centroids for the next iteration 

 

Figure 4 (b) : Recalculating the position of the centroids 

Fig. 4(c ) shows the final clusters and their centroids. 
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Figure 4 (c) : Final position of the Centroids 

 

When we examine Fig. 4(b), in Clusters 1, 2 we note that, 

the most points become closer to their new center, only one 

point in Cluster 1, and 2 points in Cluster 2 will be 

redistributed (their distances to all centroids must be 

computed), and the final clusters are presented in Fig. 4(c). 

Based on this idea, the proposed algorithm saves a lot of 

time. 

In the proposed method, we write two functions. The first 

function is the basic function of the k-means algorithm, that 

finds the nearest center for each data point, by computing 

the distances to the k centers, and for each data point keeps 

its distance to the nearest center. 

The first function is shown in Algorithm 2, which is similar 

to that in Algorithm 1, with adding a simple data structure 

to keep the distance between each point and its nearest 

cluster. This function is called distance(). 

Algorithm 2:  

An Efficient Enhanced  k-Mean Clustering Algorithm : First 

Function 

Function distance() 

//assign each point to its nearest cluster 

1. For i = 1 to n 

2. For j = 1 to k 

3. Compute squared Euclidean distance d2(xi, mj); 

4. endfor 

5. Find the closest centroid mj to xi; 

6. mj = mj+xi; nj = nj+1; 

7. MSE = MSE + d2(xi, mj); 

8. Clusterid[i] = number of the closest centroid; 

9. Pointdis[i] = Euclidean distance to the closest centroid; 

10. endfor 

11. For j = 1 to k 

12. mj = mj/nj; 

13. endfor 

 

In Line 3 the function finds the distance between point 

number i and all k centroids. Line 5 searches for the closest 

centroid to point number i, say the closest centroid is 

number j. Line 6 adds point number i to cluster number j, 

and increase the count of points in cluster j by one. Lines 8 

and 9 are used to enable us to execute the proposed idea; 

these two lines keep the number of the closest cluster and 

the distance to the closest cluster. Line 12 does centroids 

recalculation. 

The other function is shown in Algorithm3, which is the 

same as Algorithm 2 and is called distance_new(). Line 1 

finds the distance between the current point i and the new 

cluster center assigned to it in the previous iteration, if the 

computed distance is smaller than or equal to the distance 

to the old center, the point stays in its cluster that was 

assigned to in previous iteration, and there is no need to 

compute the distances to the other k−1 centers. Lines 3~5 

will be executed if the computed distance is larger than the 

distance to the old center, this is because the point may 

change its cluster, so Line 4 computes the distance between 

the current point and all k centers. Line 6 searches for the 

closest center, Line 7 assigns the current point to the closest 

cluster and increases the count of points in this cluster by 

one, Line 8 updates mean squared error. Lines 9 and 10 

keep the cluster id, for the current point assigned to it, and 

its distance to it to be used in next call of that function (i.e. 

next iteration of that function). This information is kept in 

Line 9 and Line 10 allows this function to reduce the 

distance calculation required to assign each point to the 

closest cluster, and this makes the function faster than the 

function distance in Algorithm 2 

Algorithm 3: 
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An Efficient Enhanced  k-Mean Clustering Algorithm : 

Second  Function 

Function distance_new() 

//Assign each point to its nearest cluster 

1. For i = 1 to n 

                Compute squared Euclidean distance 

                      d2 (xi, Clusterid[i]); 

                If (d2 (xi, Clusterid[i] ) <= Pointdis[i] ) 

                      Point stay in its cluster; 

2.              Else 

3.                    For j = 1 to k 

4.                          Compute squared Euclidean distance 

d2(xi, mj); 

5.                    endfor 

6.              Find the closest centroid mj to xi; 

7.              mj = mj+xi; nj = nj+1; 

8.              MSE = MSE + d2(xi, mj); 

9.              Clustered[i] = number of the closest centroid; 

10.             Pointdis[i] = Euclidean distance to the closest 

centroid; 

11. endfor 

12. For j = 1 to k 

13.         mj = mj/nj; 

        14. endfor 

 

Now, when the above algorithm for Enhanced K-Means is 

applied on the employee dataset used in K-Means, then the 

results produced are shown in the table below 

Table 3 

EMPL

OYEE 

ATTRIBUTE1:

X(Experience 

in yrs) 

ATTRIBUTE2:

Y(SalaryLacs/a

nnual) 

GROU

P 

Emp1 0.5 2 1 

Emp2 1 3 1 

Emp3 2 3.5 2 

Emp4 3 4 2 

Emp5 3.5 5 3 

Emp6 4 6 3 

Emp7 4.5 7 3 

Emp8 5 7.5 3 

 

3.1 COMPLEXITY 

As discussed before, the k-means algorithm converges to 

local minimum. Before the k-means converges, the 

centroids computed number of times, and all points are 

assigned to their nearest centroids, i.e., complete 

redistribution of points according to new centroids, this 

takes O(nkl), where n is the number of points, k is the 

number of clusters and l is the number of iterations. 

In the enhanced k-means algorithm, to obtain initial 

clusters, this process requires O(nk). Here, some points 

remain in its cluster, the others move to another cluster. If 

the point stays in its cluster this require O(1), otherwise 

require O(k). If we suppose that half points move fr 

om their clusters, this requires O(nk/2), since the algorithm 

converges to local minimum, the number of points moved 

from their clusters decreases in each iteration. So we expect 

the total cost is  nk Σ 1/i.  

Even for large number of iteration, 

                                          i=1  

      l 

nk Σ  1/nk is much less than nkl. So the cost of using 

enhanced k-means algorithm  

  Approximately is O(nk), not O(nkl). 

This can be shown through a table and a graph 
TABLE4 

COMPARISON OF TWO ALGORITHMS 

Number of 

Clusters 

k-Mean Time 

(Sec.) 

Enhanced k-Mean 

Time (Sec.) 

2 55 48 

3 62 57 
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4 67 62 

5 74 68 

 

Graphically the comparison can be shown as: 
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Fig5 comparison of k-means and enhanced k-means 

4.CONCLUSION 

In this paper, we have discussed the basic k-means 

clustering technique along with its algorithm and an 

appropriate example. Then we pointed out the limitation of 

k-means technique of having more computational 

complexity, and solution for the same. The Enhanced K-

Means Algorithm and Basic K-Means algorithm have been 

implemented on the same dataset and the Enhanced K-

Means is proved to bre efficient than Basic K-Means. 
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